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Abstract: Building on the superspace formulation for four-dimensional N = 2 matter-

coupled supergravity developed in [1], we elaborate upon a general setting for field theory

in N = 2 conformally flat superspaces, and concentrate specifically on the case of anti-de

Sitter (AdS) superspace. We demonstrate, in particular, that associated with the N = 2

AdS supergeometry is a unique vector multiplet such that the corresponding covariantly

chiral field strength W0 is constant, W0 = 1. This multiplet proves to be intrinsic in

the sense that it encodes all the information about the N = 2 AdS supergeometry in

a conformally flat frame. Moreover, it emerges as a building block in the construction of

various supersymmetric actions. Such a vector multiplet, which can be identified with one of

the two compensators of N = 2 supergravity, also naturally occurs for arbitrary conformally

flat superspaces. An explicit superspace reduction N = 2 → N = 1 is performed for the

action principle in general conformally flat N = 2 backgrounds, and examples of such

reduction are given.
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1. Introduction

Recently, we have developed the superspace formulation for four-dimensional N = 2

matter-coupled supergravity [1], extending the earlier construction for 5D N = 1 super-

gravity [2, 3]. The locally supersymmetric action proposed in [1] has a striking similarity
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with the chiral action in 4D N = 1 supergravity [4, 5] (see also [6, 7] for reviews). The

action functional proposed in [1] can be written in the form:

S =
1

2π

∮
(u+du+)

∫
d4xd4θd4θ̄ E

L++

S++S̃++
, u+

i D
i
αL

++ = u+
i D̄

i
α̇L

++ = 0 , (1.1)

with S++(u+) := Siju+
i u+

j and S̃++(u+) := S̄iju+
i u+

j . Here E−1 = Ber(EA
M ), where

EA
M is the (inverse) vielbein appearing in the superspace covariant derivatives, DA =

(Da,D
i
α, D̄α̇

i ), and Sij and S̄ij are special irreducible components of the torsion (see ap-

pendix A for more detail). The Lagrangian L++(u+) is a holomorphic homogeneous func-

tion of second degree with respect to auxiliary isotwistor variables u+
i ∈ C

2 \{0}, which are

introduced in addition to the superspace coordinates. The total measure in (1.1) includes

a contour integral in the auxiliary isotwistor space.

Let us now recall the well-known chiral action [4, 5] in 4D N = 1 old minimal (n =

−1/3) supergravity [8, 9]:

Schiral =

∫
d4xd2θd2θ̄ E

Lc

R
, ∇̄α̇Lc = 0 . (1.2)

Here E−1 is the superdeterminant of the (inverse) vielbein EA
M that enters the corre-

sponding superspace covariant derivatives ∇A = (∇a,∇α, ∇̄α̇), and R is the chiral scalar

component of the torsion (following the notation of [7]). The action is generated by a

covariantly chiral scalar Lagrangian Lc.

The similarity between (1.1) and (1.2) is at least twofold. First of all, each action

involves integration over the corresponding full superspace. Secondly, the Lagrangians

in (1.1) and (1.2) obey covariant constraints which enforce L++ and Lc to depend on half

of the corresponding superspace Grassmann variables. The latter property is of crucial

importance. It indicates that there should exist a covariant way to rewrite each action as

an integral over a submanifold of the full superspace such that the number of its fermionic

directions is half of the number of such variables in the full superspace (i.e. two in the N = 1

case and four if N = 2). In the N = 1 case, such a reformulation is well-known. Using the

chiral supergravity prepotential [5], the action (1.2) can be rewritten as an integral over the

chiral subspace of the curved superspace, see also [6, 7] for reviews (a somewhat more exotic

scheme is presented in [10]). What about the N = 2 case? There are numerous reasons to

expect that the action (1.1) can be reformulated as an integral over an N = 1 subspace of

the curved N = 2 superspace. In particular, this idea is natural from the point of view of

the projective superspace approach [11, 12] to rigid N = 2 superymmetric theories (the su-

pergravity formulation given in [1] can be viewed to be a curved projective superspace). We

hope to give a detailed elaboration of this proposal elsewhere.1 Here we only provide partial

1In the 1980s, there appeared a series of papers [13, 14] devoted to projecting special off-shell N = 2

supergravity theories into N = 1 superspace. Specifically:

(i) refs. [13] dealt with the standard 40 + 40 formulation [15] for N = 2 Poincaré supergravity realized

in N = 2 superspace [16, 17]; and

(ii) ref. [14] was concerned with N = 2 conformal supergravity realized in N = 2 superspace in [17].
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supportive evidence by considering arbitrary conformally flat N = 2 superspaces, including

a maximally symmetric supergravity background — 4D N = 2 anti-de Sitter superspace.

Unlike the case of simple anti-de Sitter supersymmetry (AdS) in four dimensions,2

field theory in the N = 2 AdS superspace is practically terra incognita.3 In the case of

the N = 2 Poincaré supersymmetry in four dimensions, there exist two universal schemes

to formulate general off-shell supersymmetric theories: the harmonic superspace [24, 25]

and the projective superspace [11, 12]. To the best of our knowledge, no thorough analysis

has been given in the literature regarding an extension of these approaches to the anti-de

Sitter supersymmetry. One of the goals of the present paper is to fill this gap.

Before turning to the technical part of this paper, a comment is in order. The ac-

tion (1.1) is equivalent to that originally given in [1]. The latter looks like

S =
1

2π

∮
(u+du+)

∫
d4xd4θd4θ̄ E

WW̄ L++

(Σ++)2
, (1.3)

where W is the covariantly chiral field strength, D̄α̇
i W = 0, of an Abelian vector multiplet

such that W is everywhere non-vanishing, and

Σ++(u+) := Σiju+
i u+

j , Σij =
1

4

(
Dγ(iDj)

γ + 4Sij
)
W =

1

4

(
D̄

(i
γ̇ D̄

j)γ̇ + 4S̄ij
)
W̄ . (1.4)

Unlike (1.1), a notable feature of (1.3) is that it is manifestly super-Weyl invariant [1]. The

N = 1 action (1.2) can also be rewritten in a manifestly super-Weyl invariant form:

S =

∫
d4xd2θd2θ̄ E

Ψ̄Lc

Σ
, Σ = −

1

4

(
∇̄2 − 4R

)
Ψ̄ , ∇̄α̇Ψ = 0 . (1.5)

Here Ψ is a covariantly chiral scalar superfield required to be everywhere non-vanishing

but otherwise arbitrary.

This paper is organized as follows. In section 2, after a brief review of the differential

geometry of the 4D N = 2 AdS superspace, AdS4|8, we elucidate the structure of N = 2

AdS Killing supervectors, and then introduce projective supermultiplets living in AdS4|8. In

section 3, the manifestly supersymmetric action in AdS4|8 is reduced to N = 1 superspace,

and then several models for hypermultiplets, tensor and vector multiplets are considered.

Section 4 begins with a general discussion of N = 2 conformally flat superspaces. We then

Since off-shell formulations for general matter couplings in N = 2 supergravity were not available at that

time, applications of [13, 14] were rather limited. We hope that the progress achieved in [1] should revitalize

the approaches pursued in [13, 14].
2The structural aspects of 4D N = 1 AdS superspace and corresponding field representations were

thoroughly studied in [18] (see also [19, 20] for earlier work).
3The necessity of having an adequate superspace setting for N = 2 AdS supersymmetry became apparent

in [21] where off-shell higher spin supermultiplets with N = 2 AdS supersymmetry were constructed.

These N = 2 supermultiplets were realized in [21] as field theories in the N = 1 AdS superspace, by

making use of the dually equivalent formulations for N = 1 supersymmetric higher spin theories previously

developed in [22]. However, their off-shell N = 2 structure clearly hinted at the existence of a manifestly

supersymmetric formulation in the N = 2 AdS superspace. Some progress toward constructing such a

formulation has been made in [23].
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realize the N = 2 AdS superspace as locally conformal flat, work out the tropical prepo-

tential for the intrinsic vector multiplet, and explicitly compute the N = 2 AdS Killing

supervectors. In section 5, the action (1.1) in an arbitrary conformally flat N = 2 super-

space is reduced to N = 1 superspace. As applications of this reduction, we consider several

models for massive hypermultiplets in AdS4|8 and vector multiplets in the conformally flat

superspace. Final comments and conclusions are given in section 6. The paper also con-

tains four technical appendices. Appendix A is devoted to a short review of the superspace

geometry of N = 2 conformal supergravity following [1]. In appendix B, we elaborate upon

the projective-superspace description of Abelian vector multiplets in conformal supergrav-

ity (along with some properties previously presented in [1], new results are included in

this appendix). Appendix C is devoted to a mini-review of the geometry of N = 1 AdS

superspace and the corresponding Killing supervectors, following [7]. Finally, appendix D

presents a summary of the stereographic projection for d-dimensional AdS spaces.

2. N = 2 anti-de Sitter supergeometry

The superspace geometry, which is quite compact to use and, at the same time, perfectly

suitable to describe 4D N = 2 conformal supergravity and covariant projective matter

supermultiplets, was presented in [1] (see appendix A for a concise review); its connection

to Howe’s formulation for conformal supergravity [17] is discussed in [1]. In such a setting,

the 4D N = 2 AdS superspace

AdS4|8 =
OSp(2|4)

SO(3, 1) × SO(2)

corresponds to a geometry with covariantly constant torsion:4

Wαβ = Yαβ = 0 , Gαβ̇ = 0 , Di
αS

kl = D̄i
α̇S

kl = 0 . (2.1)

The integrability condition for these constraints is [S,S†] = 0, with S = (Si
j), and hence

Sij = q Sij , Sij = Sij , |q| = 1 , (2.2)

where q is a constant parameter. By applying a rigid U(1) phase transformation to the

covariant derivatives, Di
α → q−1/2Di

α, one can set q = 1. This choice will be assumed in

what follows.

The covariant derivatives of the 4D N = 2 AdS superspace form the following algebra:

{Di
α,Dj

β} = 4SijMαβ + 2εαβεijSklJkl , {Di
α, D̄β̇

j } = −2iδi
j(σ

c)α
β̇Dc , (2.3a)

[Da,D
j
β ] =

i

2
(σa)βγ̇SjkD̄γ̇

k , [Da,Db] = −S2Mab , (2.3b)

with S2 := 1
2SklSkl. These anti-commutation relations follow from (A.9a)–(A.9c) by

choosing the torsion to be covariantly constant.

4Compare with the case of 5D N = 1 anti-de Sitter superspace [26].
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In accordance with the general supergravity definitions given in appendix A, the co-

variant derivatives include an appropriate SU(2) connection, see eq. (A.3). It follows

from (2.3a), however, that the corresponding curvature is generated by a U(1) subgroup of

SU(2). Therefore, one can gauge away most of the SU(2) connection except its U(1) part

corresponding to the generator SklJkl

ΦA
klJkl −→ ΦA SklJkl . (2.4)

In such a gauge, the torsion Sij becomes constant,

Sij = const . (2.5)

By applying a rigid SU(2) rotation to the covariant derivatives, we can always choose

S12 = 0 . (2.6)

This choice will be often used in what follows.

2.1 N = 2 AdS Killing supervectors: I

In this subsection, we do not assume any particular coordinate frame for the AdS covariant

derivatives DA. In particular, we do not impose the gauge fixing (2.4).

The isometry transformations of AdS4|8 form the group OSp(2|4). Their explicit struc-

ture can be determined in a manner similar to the cases of 4D N = 1 AdS superspace [7]

and 5D N = 1 superspace [26]. In the infinitesimal case, an isometry transformation is

generated by a real supervector field ξA EA such that the operator

ξ := ξA(z)DA = ξaDa + ξα
i D

i
α + ξ̄i

α̇D̄
α̇
i (2.7)

enjoys the property

[
ξ +

1

2
λcdMcd + λklJkl,DA

]
= 0 , (2.8)

for some real antisymmetric tensor λcd(z) and real symmetric tensor λkl(z), λkl = λkl. The

latter equation implies

[
ξ + λklJkl,S

ij
]

=
[
λklJkl,S

ij
]

= 0 , (2.9)

and hence λkl ∝ Skl. We therefore can replace (2.8) with

[
ξ +

1

2
λcdMcd + ρSklJkl,DA

]
= 0 , (2.10)

for some real scalar ρ(z). The meaning of eq. (2.10) is that the covariant derivatives

do not change under the combined infinitesimal transformation consisting of coordinate

(ξ), local Lorentz (λcd) and local U(1) (ρ) transformations. It turns out that eq. (2.10)

uniquely determines the parameters λcd and ρ in terms of ξ. The ξA EA is called a Killing

– 5 –
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supervector field. The set of all Killing supervector fields forms a Lie algebra, with respect

to the standard Lie bracket, isomorphic to that of the group OSp(2|4).

Eq. (2.10) implies that the parameters ξA, λcd and ρ are constrained as follows:

Di
αξβ

j − ρSi
jδ

β
α −

1

2
λα

βδi
j = 0 , (2.11a)

D̄α̇
i ξβ

j −
i

2
Sijξ

α̇β = 0 , (2.11b)

D̄α̇
i ξb + 2iξβ

i (σb)β
α̇ = 0 , (2.11c)

Di
αλcd − 4Sijξβ

j (σcd)αβ = 0 , (2.11d)

Di
αρ − 2ξi

α = 0 . (2.11e)

Note that eq. (2.11a) is equivalent to

Dk
γξγ

k = D
(i
(αξ

j)
β) = 0 , 2ρSij + Dγ(iξj)

γ = 0 , λαβ =
1

2
Dk

(αξβ)k . (2.12)

Equation (2.11b) is equivalent to

D̄α̇
k ξβk = 0 , D̄α̇

(iξ
β
j) −

i

2
Sijξ

α̇β = 0 . (2.13)

Equation (2.11c) is equivalent to

D̄
(α̇
i ξγ̇)γ = 0 , D̄γ̇iξ

γ̇γ − 8iξγ
i = 0 . (2.14)

Equation (2.11d) is equivalent to

D̄α̇
i λγδ = 0 , Di

(αλγδ) = 0 , Dγiλγδ + 6Sijξδj = 0 . (2.15)

It is also worth noting that the above equations imply

D(aξb) = 0 (2.16)

which is a natural generalization of the standard equation for Killing vectors.

Similar to the case of 5D N = 1 AdS superspace [26], all the components ξA can be

expressed in terms of the scalar parameter ρ as follows:

ξα
i =

1

2
Dα

i ρ , ξαβ̇ =
i

2S2 SijD
i
αD̄

j

β̇
ρ , λαβ =

1

4
Dk

αDβkρ . (2.17)

The latter obeys a number of constraints including

(
DγiDj

γ + 4Sij
)
ρ = 0 ,

(
Di

αD̄
j

β̇
−

1

2S2 SijSklD
k
αD̄

l
β̇

)
ρ = 0 , (2.18)

and hence

Daρ = 0 . (2.19)

– 6 –
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2.2 N = 1 reduction

It is of interest to work out N = 1 components of the N = 2 Killing supervectors, as well

as of covariant N = 2 supermultiplets. Given a tensor superfied U(x, θi, θ̄
i) in N = 2 AdS

superspace, we introduce its N = 1 projection

U | := U(x, θi, θ̄
i)|θ2=θ̄2=0 (2.20)

in a special coordinate system to be specified below. For the covariant derivatives

DA = EA
M∂M +

1

2
ΩA

bcMbc + ΦASklJkl , (2.21)

the projection is defined according to

DA| := EA
M |∂M | +

1

2
ΩA

bc|Mbc + ΦA|S
klJkl . (2.22)

Here the first term on the right, EA
M |∂M |, includes the partial derivatives with respect to

the local coordinates of N = 2 AdS superspace.

With the choice S12 = 0, as in eq. (2.6), it follows from (2.3a) and (2.3b) that

{D1
α,D1

β} = 4S11Mαβ , {D1
α, D̄β̇

1 } = −2i(σc)α
β̇Dc , [Da,D

1
β ] =

i

2
(σa)βγ̇S11D̄γ̇

1 . (2.23)

Therefore, the operators (Da, D
1
α, D̄α̇

1 ) form a closed algebra which is in fact isomorphic to

that of the covariant derivatives for N = 1 AdS superspace with

µ̄ = −S11 , (2.24)

see appendix C. Note also that no U(1) curvature is present in (2.23).

We use the freedom to perform general coordinate, local Lorentz and U(1) transfor-

mations to choose the gauge

D1
α| = ∇α , D̄α̇

1 | = ∇̄α̇ , (2.25)

with ∇A = (∇a,∇α, ∇̄α̇) the covariant derivatives for N = 1 anti-de Sitter superspace (see

appendix C). In such a coordinate system, the operators D1
α| and D̄α̇1| do not involve any

partial derivatives with respect to θ2 and θ̄2, and therefore, for any positive integer k, it

holds that
(
Dα̂1

· · · Dα̂k
U
)∣∣ = Dα̂1

| · · · Dα̂k
|U |, where Dα̂ := (D1

α, D̄α̇
1 ) and U is a tensor

superfield.

Given an arbitrary N = 2 AdS Killing supervector ξ, we consider its N = 1 projection

ξ| = λa∇a + λα∇α + λ̄α̇∇̄
α̇ + εαD2

α| + ε̄α̇D̄
α̇
2 | , (2.26)

where we have defined

λa := ξa| , λα := ξα
1 | , λ̄α̇ := ξ̄

1
α̇| , εα := ξα

2 | , ε̄α̇ := ξ
2
α̇| . (2.27)

We also introduce the projections of the parameters λab and ρ:

ωab := λab| , ε := ρ| . (2.28)

– 7 –
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Now, the OSp(2|4) transformation law of a tensor superfield U ,

δU =
(
ξ +

1

2
λcdMcd + ρSklJkl

)
U , (2.29)

turns into

δU | =

(
λa∇a + λα∇α + λ̄α̇∇̄

α̇ +
1

2
ωabMab

)
U |

+
(
εα(D2

αU)| + ε̄α̇(D̄α̇
2 U)|

)
− ε(µ̄J11 + µJ22)U | , (2.30)

where we have made use of (2.24). It can be shown that Λ = λa∇a + λα∇α + λ̄α̇∇̄
α̇ is an

N = 1 AdS Killing supervector (see appendix C), and the variation in the first line of (2.30)

is the infinitesimal OSp(1|4) transformation generated by Λ. The parameters εα, ε̄α̇ and

ε generate the second supersymmetry and U(1) transformations. It can be shown, using

eqs. (2.12)–(2.15), that they obey the constraints [21]

εα =
1

2
∇αε , ∇α∇̄

α̇ε = 0 ,
(
∇2 − 4µ̄

)
ε = 0 . (2.31)

2.3 Projective supermultiplets in AdS4|8

General matter couplings in 4D N = 2 supergravity can be described in terms of covariant

projective supermultiplets [1]. Here we briefly introduce such multiplets in the case of

N = 2 AdS superspace, and then work out their reduction to N = 1 superfields.

In the superspace AdS4|8, a projective supermultiplet of weight n, Q(n)(z, u+), is de-

fined to be a scalar superfield that lives on AdS4|8, is holomorphic with respect to the

isotwistor variables u+
i on an open domain of C

2 \ {0}, and is characterized by the follow-

ing conditions:

(1) it obeys the covariant analyticity constraints5

D+
αQ

(n) = D̄+
α̇Q

(n) = 0 , D+
α := u+

i D
i
α , D̄+

α̇ := u+
i D̄

i
α̇ ; (2.32)

(2) it is a homogeneous function of u+ of degree n, that is,

Q(n)(z, c u+) = cn Q(n)(z, u+) , c ∈ C \ {0} ; (2.33)

(3) the infinitesimal OSp(2|4) transformations act on Q(n) as follows:

δξQ
(n) =

(
ξaDa + ξα

i D
i
α + ξ̄i

α̇D̄
α̇
i + ρSijJij

)
Q(n) ,

SijJijQ
(n) = −

1

(u+u−)

(
S++D−− − n S+−

)
Q(n) , S±± = Sij u±

i u±
j , (2.34)

with D−− = u−i ∂
∂u+i . The transformation law (2.34) involves an additional two-

vector, u−
i , which is only subject to the condition (u+u−) := u+iu−

i 6= 0, and is

otherwise completely arbitrary. Both Q(n) and SijJijQ
(n) are independent of u−.

5In the rigid supersymmetric case, constraints of the form (2.32) in isotwistor superspace R
4|8

× CP 1

were first introduced by Rosly [27], and later by the harmonic [24] and projective [11, 12] superspace

practitioners.
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In the family of projective multiplets, one can introduce a generalized conjugation,

Q(n) → Q̃(n), defined as

Q̃(n)(u+) ≡ Q̄(n)
(
u+ → ũ+

)
, ũ+ = iσ2 u+ , (2.35)

with Q̄(n)(u+) the complex conjugate of Q(n)(u+). It is easy to check that Q̃(n)(z, u+) is

a projective multiplet of weight n. One can also see that
˜̃
Q(n) = (−1)nQ(n), and therefore

real supermultiplets can be consistently defined when n is even. The Q̃(n) is called the

smile-conjugate of Q(n).

It is natural to interpret the variables u+
i as homogeneous coordinates for CP 1. Due to

the homogeneity condition (2.33), the projective multiplets Q(n)(z, u+) actually depend on

a single complex variable ζ which is an inhomogeneous local complex coordinate for CP 1.

To describe the projective multiplets in terms of ζ, one should replace Q(n)(z, u+) with a

new superfield Q[n](z, ζ) ∝ Q(n)(z, u+), where Q[n](z, ζ) is holomorphic with respect to ζ.

The explicit definition of Q[n](ζ) depends on the supermultiplet under consideration. One

can cover CP 1 by two open charts in which ζ can be defined, and the simplest choice is:

(i) the north chart characterized by u+1 6= 0;

(ii) the south chart with u+2 6= 0.

Our consideration will be restricted to the north chart in which the variable ζ ∈ C is

defined as

u+i = u+1(1, ζ) = u+1ζi , ζi = (1, ζ) , ζi = εij ζj = (−ζ, 1) . (2.36)

In this chart, we can choose

u−
i = (1, 0) , u−i = εij u−

j = (0,−1) . (2.37)

Before discussing the possible types of Q[n](ζ), let us first turn to the U(1) part of the

transformation law (2.34). The parameters S++ and S+− in (2.34) can be represented as

S++ =
(
u+1

)2
Ξ(ζ) and S+− = u+1∆(ζ), where

Ξ(ζ) = Sij ζiζj = S11 ζ2 − 2S12 ζ + S22 , ∆(ζ) = S1i ζi = −S11 ζ + S12 . (2.38)

Now, let us introduce the major projective supermultiplet Q(n)(z, u+) and the corre-

sponding superfields Q[n](z, ζ). In the case of covariant arctic weight-n hypermultiplets

Υ(n)(z, u+) [1], it is natural to define

Υ(n)(z, u+) = (u+1)nΥ[n](z, ζ) , Υ[n](z, ζ) =
∞∑

k=0

Υk(z)ζk . (2.39)

The corresponding U(1) transformation law is:

ρSijJijΥ
[n](ζ) = ρ

(
Ξ(ζ) ∂ζ + n ∆(ζ)

)
Υ[n](ζ) . (2.40)
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The smile-conjugate of Υ(n) is called a covariant antarctic weight-n multiplet. In this case

Υ̃(n)(z, u) = (u+2)n Υ̃[n](z, ζ) , Υ̃[n](z, ζ) =
∞∑

k=0

(−1)kῩk(z)
1

ζk
, (2.41)

with Ῡk the complex conjugate of Υk. The U(1) transformation of Υ̃[n](z, ζ) is as follows:

ρSijJijΥ̃
[n](ζ) =

ρ

ζn

(
Ξ(ζ) ∂ζ + n ∆(ζ)

)(
ζn Υ̃(n)(ζ)

)
. (2.42)

In the case of a real weight-2n projective superfield R(2n)(z, u+), it is natural to define

R(2n)(z, u+) =
(
iu+1u+2

)n
R[2n](z, ζ) . (2.43)

The U(1) transformation of R[2n](z, ζ) is:

ρSijJijR
[2n] =

ρ

ζn

(
Ξ(ζ) ∂ζ + 2n ∆(ζ)

)(
ζnR[2n]

)
. (2.44)

There are two major types of superfields R[2n](z, ζ): a real O(2n)-multiplet (n = 1, 2, . . . )

H [2n](z, ζ) =
n∑

k=−n

Hk(z)ζk , H̄k = (−1)kH−k , (2.45)

and a tropical weight-2n multiplet

U [2n](z, ζ) =

∞∑

k=−∞

Uk(z)ζk , Ūk = (−1)kU−k . (2.46)

If the projective supermultiplet Q(n)(z, u+) is described by Q[n](z, ζ) ∝ Q(n)(z, u+),

then the covariant analyticity conditions (2.32) become

D+
α (ζ)Q[n](ζ) = 0 , D+

α (ζ) = −Di
αζi = ζ D1

α −D2
α , (2.47a)

D̄+α̇(ζ)Q[n](ζ) = 0 , D̄+α̇(ζ) = D̄α̇
i ζi = D̄α̇

1 + ζD̄α̇
2 , (2.47b)

and therefore

D2
αQ

[n](ζ) = ζ D1
αQ

[n](ζ) , D̄α̇
2Q

[n](ζ) = −
1

ζ
D̄α̇

1Q
[n](ζ) . (2.48)

The differential operator ξα
i D

i
α + ξ̄i

α̇D̄
α̇
i , which enters the transformation law (2.34), acts

on Q[n](ζ) as

(
ξα
i D

i
α + ξ̄i

α̇D̄
α̇
i

)
Q[n](ζ) =

(
(ξα

1 + ζξα
2 )D1

α +
(
ξ̄
1
α̇ −

1

ζ
ξ̄
2
α̇

)
D̄α̇

1

)
Q[n](ζ) . (2.49)

Let us impose the SU(2) gauge (2.4) and choose S12 = 0, as in eq. (2.6). Then,

eq. (2.49) implies that the N = 1 projection of ξQ[n](ζ) is

(
ξQ[n](ζ)

)∣∣∣ = ΛQ[n](ζ)
∣∣+
(

ζεα∇α −
1

ζ
ε̄α̇∇̄

α̇

)
Q[n](ζ)

∣∣ , (2.50)
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with ξ an arbitrary N = 2 AdS Killing supervector, and Λ the induced N = 1 AdS Killing

supervector. As a result, the N = 1 projection of the transformation δξΥ
[n](ζ) becomes

δξΥ
[n](ζ)

∣∣ = ΛΥ[n](ζ)
∣∣

+

(
ζεα∇α −

1

ζ
ε̄α̇∇̄

α̇

)
Υ[n](ζ)

∣∣+ ε
(
Ξ(ζ) ∂ζ + n ∆(ζ)

)
Υ[n](ζ)| , (2.51)

and similarly for δξΥ̃
[n](ζ)

∣∣. The N = 1 projection of the transformation δξR
[2n](ζ) becomes

δξR
[2n](ζ)

∣∣ = ΛR[2n](ζ)
∣∣

+

(
ζεα∇α −

1

ζ
ε̄α̇∇̄

α̇

)
R[2n](ζ)

∣∣+ ε

ζn

(
Ξ(ζ) ∂ζ + 2n ∆(ζ)

)(
ζnR[2n]

∣∣) . (2.52)

In the gauge chosen, the parameters Ξ(ζ) and ∆(ζ) are:

Ξ(ζ) = −µ̄ ζ2 − µ , ∆(ζ) = µ̄ ζ . (2.53)

3. Dynamics in AdS4|8

In the case of N = 2 anti-de Sitter space, the action (1.1) becomes

S =
1

2π

∮
(u+du+)

∫
d4xd4θd4θ̄ E

L++

(S++)2
, (3.1)

where the Lagrangian L++(z, u+) is a real weight-two projective supermultiplet.

It is worth giving two non-trivial examples of supersymmetric theories in AdS4|8. First,

we consider a superconformal model of arctic weight-one hypermultiplets Υ+ and their

smile-conjugates Υ̃+ described by the Lagrangian [28, 29]

L++
conf = iK(Υ+, Υ̃+) , (3.2)

where the real function K(ΦI , Φ̄J̄) obeys the homogeneity condition

ΦI ∂

∂ΦI
K(Φ, Φ̄) = K(Φ, Φ̄) . (3.3)

Our second example is the non-superconformal model of arctic weight-zero multiplets

Υ and their smile-conjugates Υ̃ described by the Lagrangian [26]

L++
non−conf = S++ K(Υ, Υ̃) , (3.4)

with K(ΦI , Φ̄J̄) a real function which is not required to obey any homogeneity condition.

The action is invariant under Kähler transformations of the form

K(Υ, Υ̃) → K(Υ, Υ̃) + Λ(Υ) + Λ̄(Υ̃) , (3.5)

with Λ(ΦI) a holomorphic function.

Throughout this section, the torsion Sij is chosen to obey eq. (2.6).
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3.1 Projecting the N = 2 action into N = 1 superspace: I

In this subsection, we reduce the N = 2 supersymmetric action (3.1) to the N = 1 AdS

superspace.

Without loss of generality, the integration contour in (3.1) can be assumed to lie

outside the north pole u+i ∝ (0, 1), and then we can use the complex variable ζ defined in

the north chart, eq. (2.36), to parametrize the projective supermultiplets. Associated with

the Lagrangian L++(u+) is the superfield L(ζ) defined as

L++(u+) := iu+1u+2L(ζ) = i(u+1)2ζ L(ζ) . (3.6)

Similarly, associated with S++(u+) is the superfield S(ζ) defined as

S++(u+) := i(u+1)2ζ S(ζ) , S(ζ) = i

(
µ̄ ζ + µ

1

ζ

)
. (3.7)

Let L(ζ)| denote the N = 1 projection of the Lagrangian L(ζ). Then, the manifestly

N = 2 supersymmetric functional (3.1) can be shown to be equivalent to the following

action in AdS4|4:

S =

∮

C

dζ

2πiζ

∫
d4xd2θd2θ̄ E L(ζ)| , E−1 := Ber(EA

M ) . (3.8)

While this form of the action will be derived in section 5, here we only demonstrate

that (3.8) is invariant under the OSp(2|4) transformations. We note that the transfor-

mation law of L(ζ) is given by eq. (2.52) with n = 1. It is obvious that (3.8) is manifestly

invariant under the N = 1 AdS transformations

δΛL(ζ)| = ΛL(ζ)| =
(
λa∇a + λα∇α + λ̄α̇∇̄

α̇
)
L(ζ)| . (3.9)

The other transformations, which are generated by the parameters ε, εα, ε̄α̇ in (2.52), act

on L(ζ)| as follows:

δεL(ζ)| =

(
ζεα∇α −

1

ζ
ε̄α̇∇̄

α̇

)
L(ζ)| −

ε

ζ

((
ζ2µ̄ + µ

)
∂ζ − 2ζµ̄

)(
ζL(ζ)|

)
. (3.10)

The corresponding variation of the action,

δεS =

∮

C

dζ

2πiζ

∫
d4xd2θd2θ̄ E δεL(ζ)| , (3.11)

can be transformed by integrating by parts the derivatives ∇α, ∇̄α̇ and ∂ζ . This leads to

δεS =

∮

C

dζ

2πiζ

∫
d4xd2θd2θ̄ E

(
− ζ(∇αεα)+

1

ζ
(∇̄α̇ε̄α̇)+2ε

(
µ̄ζ − µ

1

ζ

))
L(ζ)| =0 ,

where we have made use of the relations

εα =
1

2
∇αε , ∇αεα = 2µ̄ε . (3.12)
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3.2 Free hypermultiplets, dual tensor multiplets and some generalizations

To get a better feeling of the sigma-models (3.3) and (3.4), it is instructive to examine

their simplest versions corresponding to free hypermultiplets.

Consider the Lagrangian

L++
conf = i Υ̃+Υ+ (3.13)

which describes the dynamics of a weight-one arctic hypermultiplet Υ+ and its smile-

conjugate Υ̃+.

We represent Υ+(u+) = u+1Υ(ζ), where Υ(ζ) is given by a convergent Taylor series

centered at ζ = 0. Then, the analyticity conditions (2.48) imply

Υ(ζ)| = Φ + ζΓ +

+∞∑

k=2

ζkΥk| , ∇̄α̇Φ = 0 ,
(
∇̄2 − 4µ

)
Γ = 0 . (3.14)

Here Φ and Γ are covariantly chiral and complex linear superfields, respectively, while the

higher-order components Υk|, with k = 2, 3, . . . , are complex unconstrained superfields. It

is useful to recall that, in the N = 1 AdS superspace, the chirality constraint ∇̄α̇Φ = 0 is

equivalent to ∇̄2Φ = 0 [18]. Moreover, any complex scalar superfield U can be uniquely

represented in the form U = Φ + Γ, for some chiral Φ and complex linear Γ scalars [18]

(see [51] for a nice review of the N = 1 AdS supermultiplets classified in [18]).

Then, evaluating the action (3.8) with L(ζ) corresponding to (3.13) gives

Sconf =

∮

C

dζ

2πiζ

∫
d4xd2θd2θ̄ E Υ̃(ζ)|Υ(ζ)|

=

∫
d4xd2θd2θ̄ E

(
Φ̄Φ − Γ̄Γ +

+∞∑

k=2

(−1)kῩk|Υk|

)
. (3.15)

Integrating out the auxiliary superfields Υk|, in complete analogy with the flat case [30],

reduces the action to

Sconf =

∫
d4xd2θd2θ̄ E

(
Φ̄Φ − Γ̄Γ

)
. (3.16)

The first term in the action provides the standard (or minimal) off-shell description of

N = 1 massless scalar multiplet. The second term describes the same multiplet on the

mass shell, although it is realized in terms of a complex scalar and its conjugate. The latter

description is known as the non-minimal scalar multiplet [31].

The action (3.16) is manifestly N = 1 supersymmetric. It is also invariant under the

second SUSY and U(1) transformations which are generated by a real parameter ε subject

to the constraints (2.31), and have the form:

δεΦ = −
(
ε̄α̇∇̄

α̇ + εµ
)
Γ = −

1

4
(∇̄2 − 4µ)(εΓ) , δεΓ = (εα∇α + εµ̄) Φ . (3.17)
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The complex linear superfield Γ can be dualized6 into a covariantly chiral scalar superfield

Ψ, ∇̄α̇Ψ = 0, by applying a superfield Legendre transformation [32] (see [6, 7] for reviews)

to end up with

S
(dual)
conf =

∫
d4xd2θd2θ̄ E

(
Φ̄Φ + Ψ̄Ψ

)
. (3.18)

The second SUSY and U(1) invariance of this model is as follows:

δεΦ = −
1

4
(∇̄2 − 4µ)(εΨ̄) , δεΨ =

1

4
(∇̄2 − 4µ)(εΦ̄) . (3.19)

Now consider the Lagrangian

L++
non−conf =

S++

|S|
Υ̃Υ (3.20)

describing the dynamics of a weight-zero arctic multiplet Υ and its conjugate Υ̃. Upon

reduction to the N = 1 AdS superspace, this system is described by the action

Snon−conf =
1

|µ|

∮

C

dζ

2πiζ

∫
d4xd2θd2θ̄ E S(ζ)Υ̃(ζ)|Υ(ζ)| , (3.21)

where S(ζ) is given in eq. (3.7). The N = 1 projection of Υ(ζ) has the form:

Υ|(ζ) = Φ + ζΓ +

+∞∑

k=2

ζkΥk| , ∇̄α̇Φ = 0 ,
(
∇̄2 − 4µ

)
Γ = 0 , (3.22)

with the scalar superfields Υk|, k ≥ 2, being complex unconstrained. To perform the

contour integral in (3.21), it is useful to note that

1

|µ|
S(ζ) =

(
1 −

1

λ

1

ζ

)(
1 + λζ

)
, λ := i

µ̄

|µ|
. (3.23)

We then can redefine the components of the arctic multiplet as

Υ′| :=
(
1 + λζ

)
Υ| = Φ′ + ζΓ′ +

∞∑

k=2

Υ′
kζ

k ,

Φ′ = Φ , Γ′ = Γ + λΦ , Υ′
k = Υk| + λΥk−1| , k > 1 . (3.24)

Here Γ′ obeys a modified linear constraint of the form:

−
1

4

(
∇̄2 − 4µ

)
Γ′ = i|µ|Φ . (3.25)

6The existence of a duality between the minimal (Φ, Φ̄) and the non-minimal (Γ, Γ̄) formulations for

scalar multiplet became apparent after the foundational work of [5], where these realizations were shown to

occur as the compensators corresponding to the old minimal and non-minimal formulations, respectively,

for N = 1 supergravity.
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Such a constraint is typical of chiral-non-minimal multiplets [33]. The complex superfields

Υ′
k with k > 1 are obviously unconstrained. Now, the contour integral in (3.21) can easily

be performed, and the auxiliary fields integrated out, whence the action Snon−conf becomes

Snon−conf =

∫
d4xd2θd2θ̄ E

(
Φ̄Φ − Γ̄

′
Γ′
)

. (3.26)

The second SUSY and U(1) transformations of this action are:

δεΦ = iε|µ|Φ −
(
ε̄α̇∇̄

α̇ + εµ
)
Γ′ = −

1

4
(∇̄2 − 4µ)(εΓ′) ,

δεΓ
′ = iε|µ|Γ′ + (εα∇α + εµ̄)Φ . (3.27)

The generalized complex linear superfield Γ′, which is constrained by (3.25), can be dual-

ized into a covariantly chiral scalar Ψ, ∇̄α̇Ψ = 0, to result with the following purely chiral

action:

S
(dual)
non−conf =

∫
d4xd2θd2θ̄ E

(
Φ̄Φ + Ψ̄Ψ− i

µ̄

|µ|
ΨΦ + i

µ

|µ|
Ψ̄Φ̄

)
. (3.28)

In a flat superspace limit, µ → 0, the last two terms in (3.28) will drop out. The second

SUSY and U(1) transformations of the model (3.28) coincide, modulo a simple re-labeling

of the chiral variables, with (3.19).

The difference between the hypermultiplet models (3.13) and (3.20) can naturally be

understood in terms of their dual tensor multiplet models. The conformal theory (3.13)

turns out to be dual to the improved N = 2 tensor model [11, 32, 34, 35]. When realized

in the N = 2 AdS superspace, the latter is described by the following Lagrangian:

L++
impr.−tensor = −G++ ln

G++

S++ , (3.29)

with G++ a real O(2) multiplet. The non-conformal theory (3.20) is dual to the tensor

multiplet model

L++
tensor = −

1

2

(G++)2

S++ . (3.30)

This is similar to the situation in N = 1 AdS supersymmetry, where the conformal scalar

multiplet model described by the Lagrangian

Lconf = Φ̄Φ (3.31)

is dual to the improved tensor multiplet model [36]

Limpr.−tensor = −G ln G ,
(
∇̄2 − 4µ

)
G = 0 , G = Ḡ , (3.32)

while the non-conformal scalar multiplet model

Lnon−conf =
1

2

(
Φ̄ + Φ

)2
(3.33)
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is dual to the ordinary tensor multiplet model [37]

Ltensor = −
1

2
G2 . (3.34)

A nonlinear generalization of the tensor multiplet model (3.30) is

L++ = S++ F

(
G++

S++

)
, (3.35)

for some function F , compare with the rigid N = 2 supersymmetric models for tensor

multiplets [11]. This theory can be seen to be dual to a weight-zero polar multiplet model

of the form

L++ = S++
F

(
Υ̃ + Υ

)
, (3.36)

for some function F related to F .

3.3 Models involving the intrinsic vector multiplet

The structure of off-shell vector multiplets in a background of N = 2 conformal supergravity

is discussed in [1]; see also appendix B. In the case of AdS4|8, we have Sij = S̄ij = Sij .

Then, the Bianchi identity for the field strength W of an Abelian vector multiplet, eq. (B.2),

tells us that there exists a vector multiplet with a constant field strength, W0, which can

be chosen to be

W0 = 1 . (3.37)

Its existence is supported by the geometry of the AdS superspace, and for this reason this

vector multiplet will be called intrinsic. We denote the corresponding tropical prepotential

by V0(z, u+), and it should be emphasized that V0 is defined modulo gauge transformations

of the form:

δV0 = λ + λ̃ , (3.38)

where λ is a covariant weight-zero arctic multiplet. Using V0 allows us to construct a

number of interesting models in AdS4|8.

Consider a system of Abelian vector supermultiplets in AdS4|8 described by their co-

variantly chiral field strengths WI , where I = 1, . . . , n. The dynamics of this system can

be described by a Lagrangian of the form:

L++ = −
1

4
V0

[(
(D+)2 + 4S++

)
F(WI) +

(
(D̄+)2 + 4S++

)
F̄(W̄I)

]
, (3.39)

with F(WI) a holomorphic function. The action generated by L++ is invariant under

the gauge transformations (3.38). This theory is an AdS extension of the famous vector

multiplet model behind the concept of rigid special geometry [38]. The Lagrangian (3.39)

is analogous to the rigid harmonic superspace representation for effective vector multiplet

models given in [39]. In section 5, we will return to a study of the model (3.39) for the

case when AdS4|8 is replaced by a general conformally flat superspace.

To describe massive hypermultiplets, we can follow the construction originally devel-

oped in the N = 2 super-Poincaré case within the harmonic superspace approach [40] and
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later generalized to the projective superspace [41, 42]. That is, off-shell hypermultiplets

should simply be coupled to the intrinsic vector multiplet, following the general pattern

of coupling polar hypermultiplets to vector multiplets [12]. A massive weight-one polar

hypermultiplet can be described by the Lagrangian

L++
1 = i Υ̃+em V0Υ+ , m = const (3.40)

which is invariant under the gauge transformation of V0, eq. (3.38), accompanied by

δΥ+ = −m λΥ+ . (3.41)

Similarly, a massive weight-zero polar multiplet can be described by the gauge-invariant

Lagrangian:

L++
2 =

S++

|S|
Υ̃em V0Υ , m = const . (3.42)

4. Conformal flatness and intrinsic vector multiplet

We have seen that the dynamics of various models in AdS4|8 is formulated using the pre-

potential of the intrinsic vector multiplet. To reduce such actions to the N = 1 AdS

superspace, it is advantageous to realize AdS4|8 as a conformally flat superspace.

The fact that the N = 2 AdS superspace is locally conformal flat has already been

discussed in the literature [43]. This result will be re-derived in a more general setting in

subsection 4.1.

It is useful to start by recalling the structure of super-Weyl transformations in 4D

N = 2 conformal supergravity following [1]. The superspace geometry describing the 4D

N = 2 Weyl multiplet was studied in detail in [1], and a summary is given in appendix

A. The corresponding covariant derivatives DA = (Da,D
i
α, D̄α̇

i ) obey the constraints (A.8),

and the latter are solved in terms of the dimension 1 tensors Sij , Gαα̇, Yαβ and Wαβ and

their complex conjugates, see eqs. (A.9a)–(A.9c). Let DA = (Da,D
i
α, D̄α̇

i ) be another set

of covariant derivatives satisfying the same constraints (A.8), with Sij , Gαα̇, Yαβ and Wαβ

being the dimension 1 components of the torsion. The two supergeometries, which are

associated with DA and DA, are said to be conformally related (equivalently, they describe

the same Weyl multiplet) if they are related by a super-Weyl transformation of the form:7

Di
α = e

1

2
σ̄
(
Di

α + (Dγiσ)Mγα − (Dαkσ)Jki
)

, (4.1a)

D̄α̇i = e
1

2
σ
(
D̄α̇i + (D̄γ̇

i σ̄)M̄γ̇α̇ + (D̄k
α̇σ̄)Jki

)
, (4.1b)

Da = e
1

2
(σ+σ̄)

(
Da +

i

4
(σa)

α
β̇(D̄β̇

k σ̄)Dk
α +

i

4
(σa)

α
β̇(Dk

ασ)D̄β̇
k −

1

2

(
Db(σ + σ̄)

)
Mab

+
i

8
(σ̃a)

α̇α(Dβkσ)(D̄α̇kσ̄)Mαβ +
i

8
(σ̃a)

α̇α(D̄β̇
k σ̄)(Dk

ασ)M̄α̇β̇

−
i

4
(σ̃a)

α̇α(Dk
ασ)(D̄l

α̇σ̄)Jkl

)
, (4.1c)

7In [1], only the infinitesimal super-Weyl transformation was given.
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where the parameter σ is covariantly chiral D̄α̇
i σ = 0. The dimension-1 components of the

torsion are related as follows:

Sij = eσ̄

(
Sij −

1

4
(Dγ

(iDγj)σ) +
1

4
(Dγ

(iσ)(Dγj)σ)

)
, (4.2a)

Gα
β̇ = e

1

2
(σ+σ̄)

(
Gα

β̇ −
i

4
(σc)α

β̇Dc(σ − σ̄) −
1

8
(Dk

ασ)(D̄β̇
k σ̄)

)
, (4.2b)

Yαβ = eσ̄

(
Yαβ −

1

4
(Dk

(αDβ)kσ) −
1

4
(Dk

(ασ)(Dβ)kσ)

)
, (4.2c)

Wαβ = eσWαβ . (4.2d)

The geometry DA will be called conformally flat if the covariant derivatives DA corre-

spond to a flat superspace.

Consider a vector multiplet. With respect to the conformally related covariant deriva-

tives DA and DA, it is characterized by different covariantly chiral field strengths W and

W obeying the equations:

D̄i
α̇W = 0 ,

(
Dγ(iDj)

γ + 4Sij
)
W =

(
D̄

(i
γ̇ D̄

j)γ̇ + 4S̄ij
)
W̄ ,

D̄i
α̇W = 0 ,

(
Dγ(iDj)

γ + 4Sij
)
W =

(
D̄

(i
γ̇ D̄j)γ̇ + 4S̄ij

)
W̄ .

The field strengths are related to each other as follows [1]:

W = eσ W . (4.3)

Consider a covariant weight-n projective supermultiplet. With respect to the confor-

mally related covariant derivatives DA and DA, it is described by superfields Q(n) and Q(n)

obeying the constraints

D+
αQ

(n) = D̄+
α̇Q

(n) = 0 , D+
α Q(n) = D̄+

α̇ Q(n) = 0 . (4.4)

In the case of matter multiplets, these superfields are related to each other as follows8 [1]:

Q(n) = e
n

2
(σ+σ̄) Q(n) . (4.5)

As argued in [1], the super-Weyl gauge freedom can always be used to impose the reality

condition Sij = S̄ij . The same condition can be chosen for the supergeometry generated

by the covariant derivatives DA. Therefore, if the conformally related supergeometries are

characterized by the reality conditions

Sij = S̄ij , Sij = S̄ij , (4.6)

then eq. (4.2a) tells us that

W := e−σ (4.7)

8The super-Weyl transformation laws (4.3) and (4.5) have natural counterparts in the case of 5D N = 1

supergravity [3].
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is the covariantly chiral field strength of a vector multiplet with respect to the covariant

derivatives DA. Due to (4.3), we then have W = 1.

It is instructive to compare the N = 2 super-Weyl transformation, eqs. (4.1a)–(4.1c),

with that in N = 1 old minimal supergavity [44]:

∇α = FDα − 2(DγF )Mγα , F := ϕ1/2ϕ̄−1 , D̄α̇ϕ = 0 (4.8a)

∇̄α̇ = F̄ D̄α̇ − 2(D̄γ̇F̄ )M̄γ̇α̇ , (4.8b)

∇αα̇ =
i

2
{∇α, ∇̄α̇} . (4.8c)

Here ∇A = (∇a,∇α, ∇̄α̇) and DA = (Da,Dα, D̄α̇) are two sets of N = 1 supergravity

covariant derivatives obeying the modified Wess-Zumino constraints.

4.1 Reconstructing the intrinsic vector multiplet

The superspace geometry of AdS4|8 is determined by the relations (2.1) and (2.2). Let us

demonstrate that AdS4|8 is conformally flat, which we note would imply that Sij = Gαα̇ =

Yαβ = Wαβ = 0 in eqs. (4.2a)–(4.2d). Our first task is to search for a chiral scalar σ such

that Yαβ = Gαβ̇ = 0. The equation Yαβ = 0 is equivalent to

Dk
(αDβ)k eσ = 0 . (4.9)

The equation Gαβ̇ = 0 is equivalent to

[Dk
α, D̄α̇

k ]eσ+σ̄ = 0 . (4.10)

The covariant derivatives of the flat global N = 2 superspace are DA = (∂a,D
i
α, D̄α̇

i ), with

Di
α =

∂

∂θα
i

− i(σb)α
β̇ θ̄i

β̇
∂b , D̄α̇

i =
∂

∂θ̄i
α̇

− i(σb)β
α̇θβ

i ∂b . (4.11)

Consider a Lorentz invariant ansatz for σ and σ̄ given by

eσ = A(x2
L) + θijB

ij(x2
L) + θ4C(x2

L) , eσ̄ = Ā(x2
R) + θ̄ijB̄ij(x

2
R) + θ̄4C̄(x2

R) , (4.12)

where

xa
L := xa − i(σa)α

α̇θα
k θ̄k

α̇ , θij := θα
i θαj , θ4 := θijθ

ij , (4.13a)

xa
R := xa + i(σa)α

α̇θα
k θ̄k

α̇ , θ̄ij := θ̄i
α̇θ̄α̇j , θ̄4 := θ̄ij θ̄ij , (4.13b)

and the functions Ā, B̄ij , C̄ are the complex conjugates of A, Bij, C. The variables xa
L

and θα
i parametrize the chiral subspace of the flat N = 2 superspace.

Equation (4.9) proves to restrict the coefficients in (4.12) to look like

A(x2) = a1 + a2 x2 , Bij(x2) = bij , C(x2) = 0 , (4.14)

where a1, a2, bij are constant parameters. Next, equation (4.10) imposes additional condi-

tions on the parameters a1, a2 and bij :

a1ā2 = ā1a2 , bik b̄kj = −4a1ā2δ
i
j . (4.15)
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Without loss of generality, the constant a1 can be chosen to be a1 = 1, and then the

relations (4.15) are equivalent to

bij = qsij , a2 = −
1

4
s2 , sij = sij , |q| = 1 , s2 :=

1

2
sijsij . (4.16)

It can be seen that the parameter q coincides with that appearing in (2.2). In accordance

with the consideration in section 2, we set q = 1. Now, the solution to eqs. (4.9) and (4.10)

can be expressed as

eσ = 1 −
1

4
s2x2

L + sijθij , eσ̄ = 1 −
1

4
s2x2

R + sij θ̄
ij . (4.17)

Note that the tensors Sij and S̄ij are expressed in terms of σ and σ̄ as follows:

Sij =
1

4
eσ+σ̄(Dije−σ) , S̄ij =

1

4
eσ+σ̄(D̄ije−σ̄) , (4.18)

with Dij := Dγ(iD
j)
γ and D̄ij := D̄

(i
γ̇ D̄j)γ̇ . It also holds

Sij = sij + O(θ) , S̄ij = sij + O(θ) . (4.19)

Then, the relation

Sij = S̄ij ≡ Sij (4.20)

holds as a consequence of the Bianchi identities. Defining a new chiral superfield

W0 := e−σ =

(
1 −

1

4
s2x2

L + sijθij

)−1

, D̄α̇
i W0 = 0 , (4.21)

one can see that eq. (4.20) is equivalent to

DijW0 = D̄ijW̄0 . (4.22)

This is the Bianchi identity for the field strength of an Abelian vector multiplet in flat

superspace [45]. It is an instructive exercise to check eq. (4.22) by explicit calculations.

It follows from the expression for W0, eq. (4.21), and the explicit form for the vector

covariant derivative Da, eq. (4.1c), that the space-time metric is

ds2 = dxa dxa

(
W0W̄0

)∣∣∣
θ=0

=
dxad xa(

1 − 1
4s2x2

)2 . (4.23)

Modulo a trivial redefinition, this expression coincides with the metric in the north chart

of AdS4 defined in appendix D, with xa being the stereographic coordinates. The metric

can be brought to the form (D.3) by re-scaling xa → 2xa and then identifying s2 = R−2.

As expected, the conformally flat representation (4.1a)–(4.1c) is defined only locally.

Associated with the field strengths W0 and W̄0 is their descendant

Σij
0 :=

1

4
DijW0 =

1

4
D̄ijW̄0 , Σij

0 = εikεjl Σ
kl
0 (4.24)
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enjoying the properties

D(i
αΣ

jk)
0 = D̄α̇(iΣ

jk)
0 = 0 (4.25)

that are characteristic of the N = 2 tensor multiplet. Contracting the indices of Σij
0 with

the isotwistor variables u+
i ∈ C

2 \ {0}, we then obtain the following real O(2) multiplet:

Σ++
0 (z, u+) := u+

i u+
j Σij

0 (z) , D+
α Σ++

0 = D̄α̇+Σ++
0 = 0 . (4.26)

It can be shown that Σ++
0 has the form:

Σ++
0 =

s++

(
1 − 1

4s2x2
A

)2 −
2s2
(
(θ+)2 + (θ̄+)2

)
(
1 − 1

4s2x2
A

)3 −
2is2s+−(xA)α

α̇θα+θ̄+
α̇

(u+u−)
(
1 − 1

4s2x2
A

)3

+
1

2

s2s−−
(
8 + s2x2

A

)
(θ+)2(θ̄+)2

(u+u−)2
(
1 − 1

4s2x2
A

)4 . (4.27)

Here s±± = siju±
i u±

j , θ±α = θi
αu±

i and θ̄±α̇ = θ̄i
α̇u±

i , (θ+)2 = θ+αθ+
α and

xa
A = xa +

i

(u+u−)
(σa)α

α̇
(
θα+θ̄−α̇ + θα−θ̄+

α̇

)
. (4.28)

The variables xa
A, θ+

α and θ̄+
α̇ are annihilated by the covariant derivateves D+

α := u+
i Di

α

and D̄α̇+ := u+
i D̄α̇i, and can be used to parametrize the analytic subspace of harmonic

superspace [24, 25]. One can check that Σ++
0 has the form (4.26), and hence does not

depend on u−,
∂

∂u−
Σ++

0 = 0 , (4.29)

in spite of the fact that separate contributions to the right-hand side of (4.27) explicitly

depend on u−. In conclusion, we give the explicit expression for the torsion Sij :

Sij = (W0W̄0)
−1 Σij

0 . (4.30)

It is important to point out that now Sij is covariantly constant, Di
αSkl = D̄i

α̇Skl = 0,

but not constant. This clearly differs from the analysis in section 2, and the origin of

this disparity is very simple. In section 2, we imposed the SU(2) gauge (2.4) in which

only a U(1) part of the SU(2) connection survived, and the covariant derivatives had

the form (2.21). Here we are using the conformally flat representation for the covariant

derivatives, eqs. (4.1a) and (4.1b), such that the connection becomes a linear combination

of all the generators of the group SU(2).

4.2 Prepotential for the intrinsic vector multiplet

The field strength W0 of the intrinsic vector multiplet, eqs. (4.17) and (4.21), depends on

the constant isotensor sij = sji obeying the reality condition sij = sij. By applying a rigid

SU(2) rotation one can always set

s12 = 0 . (4.31)
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This choice will be used in the remainder of the paper.

Modulo gauge transformations, the prepotential for the intrinsic vector multiplet can

be chosen to be

V0(z, u+) = V0(z, ζ) = i
θ2(ζ) + θ̄

2
(ζ)

ζ
(
1 − 1

4 |s
11|2x2

A(ζ)
) − i

(
ζs11 + 1

ζ s22
)
θ2(ζ)θ̄

2
(ζ)

ζ2
(
1 − 1

4 |s
11|2x2

A(ζ)
)2 . (4.32)

Here we have made use of the complex coordinate ζ for CP 1 as well as the following

ζ-dependent superspace variables

θα(ζ) = −ζθα
2 − θα

1 , θ̄α̇(ζ) = −ζθ̄
1
α̇ + θ̄

2
α̇ ,

xa
A(ζ) = xa + i(σa)α

α̇θα(ζ)θ̄
1
α̇ + i(σa)α

α̇θα
2 θ̄α̇(ζ) , (4.33)

which are annihilated by ζiD
i
α and ζiD̄

α̇i, with ζi = (−ζ, 1).

4.3 N = 1 reduction revisited

We have elaborated upon the superspace reduction N = 2 → N = 1 in subsection 2.2

using the representation (2.21) for the covariant derivatives. Such a reduction should be

carried out afresh if the covariant derivatives are given in the conformally flat representation

defined by eqs. (4.1a) and (4.1b). One of the reasons for this is that the component S12 of

the torsion Sij does not vanish and the algebra of the operators (Da,D
1
α, D̄α̇

1 ) is no longer

closed, for the third relation in (2.23) turns into

[Da,D
1
β] =

i

2
(σa)βγ̇S11D̄γ̇

1 +
i

2
(σa)βγ̇S12D̄γ̇

2 . (4.34)

Nevertheless, it can be shown, using (4.31), that the projection of S12 does vanish,

S12
∣∣ = 0 . (4.35)

Another consequence of the choice (4.31) is

(D2
ασ)| = (D̄α̇

2 σ̄)| = 0 . (4.36)

Then, applying the N = 1 projection to the covariant derivatives,

DA| := EA
M |∂M ] +

1

2
ΩA

bc|Mbc + ΦA
kl|Jkl , (4.37)

for D1
α| and D̄α̇1| we get

D1
α| = e

1

2
σ̄|
(
Dα + (Dγσ|)Mγα + (Dασ|)J12

)
, (4.38a)

D̄α̇1| = e
1

2
σ|
(
D̄α̇ + (D̄γ̇ σ̄|)M̄γ̇α̇ + (D̄α̇σ̄|)J12

)
. (4.38b)

Here Dα and D̄α̇ are the spinor covariant derivatives for the flat global N = 1 superspace

parametrized by (xa, θα, θ̄α̇), with

θα := θα
1 , θ̄α̇ := θ̄

1
α̇ , Dα := D1

α| , D̄α̇ := D̄α̇
1 | . (4.39)
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As is seen from (4.38a) and (4.38b), the operators D1
α| and D̄α̇1| do not involve any partial

derivatives with respect to θ2 and θ̄2. Another important property is that the operator J12

is diagonal when acting on D1
α and D̄α̇1. Therefore, for any positive integer k, it holds that(

Dα̂1
· · · Dα̂k

U
)∣∣ = Dα̂1

| · · · Dα̂k
|U |, where Dα̂ = (D

1
α, D̄α̇

1 ) and U is an arbitrary superfield.

This implies that the operators (Da|,D
1
α|, D̄α̇

1 |) satisfy the (anti-)commutation relations:

{
D1

α|,D
1
β |
}

= 4S11|Mαβ ,
{
D1

α|, D̄
β̇
1 |
}

= −2i(σc)α
β̇Dc| ,

[
Da|,D

1
β |
]

=
i

2
(σa)βγ̇S11|D̄γ̇

1 | . (4.40)

The algebra (4.40) is isomorphic to that of the N = 1 AdS covariant derivatives

∇A = (∇a,∇α, ∇̄α̇), see appendix C. Unlike ∇A, however, the operators (Da|,D
1
α|, D̄α̇

1 |)

involve a zero-curvature U(1) connection, with J12 the U(1) generator. The latter connec-

tion can be gauged away. Making use of the explicit action of the generator J12 on the

covariant derivatives,

[J12,D
1
α] = −

1

2
D1

α , [J12, D̄
α̇
1 ] =

1

2
D̄α̇

1 . (4.41)

one finds

e−(σ̄−σ)|J12 D1
α| e

(σ̄−σ)|J12 = ∇α , e−(σ̄−σ)|J12 D̄α̇1| e
(σ̄−σ)|J12 = ∇̄α̇ . (4.42)

Here the operators ∇A = (∇a,∇α, ∇̄α̇) have the form (4.8a)–(4.8c), where

DA = (Da,Dα, D̄α̇) are the flat N = 1 covariant derivatives, and the chiral superfield ϕ is

ϕ := W0| =

(
1 −

µµ̄

4
x2

L − µ̄θ2

)−1

, D̄α̇ϕ = 0 , (4.43)

with

µ̄ := −s11 , µ := −s22 = −s11 . (4.44)

The operators ∇A = (∇a,∇α, ∇̄α̇) coincide with the N = 1 AdS covariant derivatives as

given in [7], and satisfy the (anti-)commutation relations (C.2a) and (C.2b).

Let us describe the action of the U(1)-rotation e−(σ̄−σ)J12 on different types of projective

multiplets. For a covariant weight-n arctic hypermultiplet (2.39) it holds

Υ[n](z, ζ) =
+∞∑

k=0

Υk(z)ζk , e−(σ̄−σ)J12Υ[n](z, ζ) = e−
n

2
(σ̄−σ)Υ[n]

(
z, e(σ̄−σ)ζ

)
. (4.45)

Here we have used the results of [1] for the SU(2)-transformation rules of the component su-

perfields of projective multiplets. In the case of a real weight-2n projective superfield (2.43),

such as O(2n) multiplets, one finds

R[2n](z, ζ) =
+∞∑

k=−∞

Rk(z)ζk , e−(σ̄−σ)J12R[2n](z, ζ) = R[2n]
(
z, e(σ̄−σ)ζ

)
. (4.46)
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To conclude this section, we wish to give the expressions for Sij| and V0| which will

be useful in what follows. For the O(2) multiplet S++ := u+
i u+

j Sij, one can show

S++| = iu+1u+2S(ζ)| , S(ζ)| = i

(
ϕ−1ϕ̄ µ̄ ζ + ϕ̄−1ϕµ

1

ζ

)
. (4.47)

It is important to note that

e−(σ̄−σ)|J12S(ζ)| = i

(
µ̄ ζ + µ

1

ζ

)
, (4.48)

where we have used (4.46). For the prepotential V0(ζ) of the intrinsic vector multiplet, we

obtain

V0(ζ)| = i

(
ϕθ̄2 ζ + ϕ̄θ2 1

ζ

)
, (4.49)

and hence

V̂0(ζ) := e−(σ̄−σ)J12V0(ζ)| = i

((
ϕ2ϕ̄−1θ̄2

)
ζ +

(
ϕ̄2ϕ−1θ2

)1
ζ

)
:= ζV+ −

1

ζ
V− . (4.50)

4.4 N = 2 AdS Killing supervectors: II

In this subsection, the N = 2 AdS Killing supervectors are explicitly evaluated using the

conformally flat representation for DA derived earlier.

Our starting point will be the observation that the conformally related supergeometries

have isomorphic superconformal algebras (see [7] for a pedagogical discussion of this result

in the case of 4D N = 1 supergravity). Therefore, since the superspaces R
4|8 and AdS4|8

are conformally related, they possess the same superconformal algebra, su(2, 2|2). It is well

known how su(2, 2|2) is realized in the 4D N = 2 flat superspace, see e.g. [28, 29, 46 – 48]

and references therein. Let us first recall this realization following [28, 29, 48].

By definition, a superconformal Killing vector of R
4|8

ξ = ξ̄ = ξA(z)DA = ξa∂a + ξα
i Di

α + ξ̄
i
α̇D̄α̇

i (4.51)

obeys the constraint

δσDA +

[
ξ +

1

2
KcdMcd + KklJkl,DA

]
= 0 , (4.52)

for a chiral scalar σ(z), D̄α̇
i σ = 0, which generates an infinitesimal super-Weyl transfor-

mation, a real antisymmetric tensor Kcd(z) and a real symmetric tensor Kkl(z). This

constraint implies

D̄α̇
i Kβγ = 0 , Di

αKβγ = δ(β
α Dγ)iσ , Di

αKkl = εi(kDl)
ασ , (4.53)

as well as

[ξ,Di
α] = −

1

2
σ̄ Di

α − Kα
βDi

β − Ki
jD

j
α . (4.54)
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The latter equation, in turn, leads to

Kαβ =
1

2
Di

(αξβ)i , σ =
1

2
D̄α̇

i ξ̄
i
α̇ , (4.55a)

Ki
j =

1

2

(
Di

αξα
j −

1

2
δi
jD

k
αξα

k

)
= −

1

2

(
D̄α̇

j ξ̄
i
α̇ −

1

2
δi
jD̄

α̇
k ξ̄

k
α̇

)
, (4.55b)

as well as

D̄α̇
i ξβ̇β = 4iεα̇β̇ξ

β
i , D̄α̇

i ξ
β
j = 0 . (4.56)

The general expression for the superconformal Killing vector can be shown to be

ξa =
1

2

(
ξa

L + ξ̄
a
R

)
+ i(σa)α

α̇ξα
k θ̄k

α̇ + i(σa)α
α̇ξ̄

k
α̇θα

k ,

ξα̇α
L = pα̇α + (r + r̄)xα̇α

L − ω̄α̇
β̇xβ̇α

L − xα̇β
L ωβ

α + xα̇β
L kββ̇xβ̇α

L + 4iǭα̇kθα
k − 4xα̇β

L ηk
βθα

k ,

ξα
i = ǫα

i + r̄θα
i − θβ

i ωβ
α − Λi

jθα
j + θβ

i kββ̇xβ̇α
L − iη̄iβ̇xβ̇α

L − 4θβ
i ηk

βθα
k , (4.57)

see, e.g., [47, 28] for two different derivations. Here the constant parameters (ωα
β , ω̄α̇

β̇)

correspond to a Lorentz transformation, pα̇β a space-time translation, kαβ̇ a special con-

formal transformation, r a combined scale and chiral U(1) transformation, (ǫα
i , ǭα̇i) and

(ηi
α, η̄iα̇) Q-supersymmetry and S-supersymmetry transformations respectively, and finally

Λi
j an SU(2) transformation.

If W is the chiral field strength of an Abelian vector multiplet in R
4|8, such

that DαiDj
αW = D̄i

α̇D̄jα̇W̄ is the corresponding Bianchi identity, its superconformal

transformation is

δW = ξW + σW , (4.58)

see, e.g., [48]. The superconformal transformations of the rigid projective multiplets are

given in [29].

Now, let us return to the N = 2 AdS superspace, and let ξA(z)EA be its Killing

supervector. We can represent

ξA(z)EA = ξA(z)DA ≡ ξ , (4.59)

where

ξa = e
1

2
(σ+σ̄)ξa , ξα

i = e
1

2
σ̄ξα

i +
i

4
e

1

2
(σ+σ̄)ξα

β̇(D̄β̇
i σ̄) . (4.60)

Then, eq. (2.8) proves to be equivalent to the fact that ξ is a superconformal Killing

supervector in R
4|8 such that

δW0 = ξW0 + σW0 = 0 , (4.61)

with W0 the field strength of the intrinsic vector multiplet. In other words, W0 is invariant

under the N = 2 AdS transformations (which is completely natural, keeping in mind that

W0 = 1). The invariance of W0 implies that the AdS transformation of the prepotential

V0 is a pure gauge transformation.
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The general solution of (4.61) can be shown to be

r = 0 , (4.62a)

ka =
1

4
s2pa , (4.62b)

ηi
α =

1

2
sijǫαj , η̄α̇

i =
1

2
sij ǭ

α̇j , (4.62c)

Λij = lsij , l̄ = l , (4.62d)

with no restrictions on the Lorentz parameters. Using the solution (4.62a)–(4.62d) in (4.57),

from (4.60) one can read off the N = 2 AdS Killing supervectors ξ in terms of ξ.

It is instructive to consider the N = 1 reduction of the N = 2 AdS Killing supervectors.

Let us first give the N = 1 projection of the superconformal Killing vector ξ associated

with the N = 2 AdS Killing vector field ξA(z)EA:

λαα̇ = ξαα̇| =

(
1 −

|µ|2

4
θ2θ̄2

)
pαα̇ +

|µ|2

4
xαβ̇pββ̇xβα̇ − ωα

βxβα̇ − ω̄α̇
β̇xαβ̇

− 2θα(2iǭα̇1+µ̄xβα̇ǫβ1)−2θ̄α̇(2iǫα
1 −µxαβ̇ ǭ

1

β̇
)−iθαθ̄β̇

(
2ω̄α̇β̇+

|µ|2

2
pβ(α̇xβ

β̇)

)

− iθ̄α̇θβ

(
2ωαβ −

|µ|2

2
p(α

β̇xβ)β̇

)
− 2iµ̄ǫα

1 θ̄α̇θ2 − 2iµǭα̇1θαθ̄2 , (4.63a)

λα = ξα
1 | = ǫα

1

(
1 − µ̄θ2

)
− θβωβ

α +
|µ|2

4
θβpββ̇xβ̇α

L +
i

2
µǭ

1

β̇
xβ̇α

L , (4.63b)

εα = ξα
2 | = ǫα

2 + lµ̄θα +
i

2
µ̄ǭ

2

β̇
xβ̇α

L . (4.63c)

Then, the N = 1 AdS Killing supervector Λ = λa∇a +λα∇α + λ̄α̇∇̄
α̇ is expressed in terms

of λa and λα as follows:

λa = ϕ
1

2 ϕ̄
1

2 λa , (4.64a)

λα = −
i

8
∇̄β̇λαβ̇ = ϕ− 1

2 ϕ̄

(
λα +

i

4
λα

β̇D̄β̇ log ϕ̄

)
. (4.64b)

These expressions agree with [7]. The second supersymmetry and U(1) transformations in

the N = 1 AdS superspace are generated by ε and εα which are related to εα appearing

in eq. (4.63c) as follows:

εα = ϕ
1

2 εα , (4.65a)

ε =
1

2µ̄
∇αεα =

1

2µ̄
ϕϕ̄−1

(
Dαεα + 2(Dα log ϕ)εα

)
,

=
1

2µ
∇̄α̇ε̄α̇ =

1

2µ
ϕ̄ϕ−1

(
D̄α̇ε̄α̇ + 2(D̄α̇ log ϕ̄)ε̄α̇

)
. (4.65b)

The explicit expression for ε is

ε = −l +
(2 − µθ̄2)ǫ2θ + (2 − µ̄θ2)ǭ2θ̄ + ixa(µǫ2σaθ̄ − µ̄θσaǭ

2) + l(µ̄θ2 + µθ̄2)(
1 − |µ|2

4 x2
)

+
µǫ2θθ̄2 + µ̄θ2ǭ2θ̄ + i|µ|2

2 xa(ǫ2σaθ̄θ
2 − θσaǭ

2θ̄2) + l|µ|2θ2θ̄2

(
1 − |µ|2

4 x2
)2 . (4.66)
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As argued earlier, the N = 2 AdS transformation of the prepotential V0 is a pure

gauge transformation. Any AdS transformation should be accompanied by the inverse of

the associated gauge transformation, in order to keep V0 fixed. This will result in modified

supersymmetry transformations of charged hypermultiplets (supersymmetry with central

charge), in complete analogy with the rigid supersymmetric case [40]. Here we provide the

expression for the induced gauge transformation of V̂0| = e−(σ̄−σ)J12V0|, see eq. (4.50). A

direct calculation gives

δV̂0| = λ| + λ̃| , λ| = λ0| + ζλ1| + ζ2λ2| , (4.67)

where

λ0| = i
2ǫ2θ − iµ̄xa

Lθσaǭ
2 + lµ̄θ2

(
1 − |µ|2

4 x2
L

) , λ1| = ΛV+ , λ2| =
(
εα∇α − εµ̄

)
V+ . (4.68)

Note that in eq. (4.67), λ0| is chiral and λ1| can be seen to be complex linear, (∇̄2−4µ)λ1 =

0. This agrees with the requirement that the gauge parameter λ should be a weight-zero

arctic superfield.

5. Dynamics in N = 2 conformally flat superspace

In this section we study supersymmetric theories in an arbitrary conformally flat N = 2

superspace M4|8. The corresponding covariant derivatives DA will be assumed to have the

form (4.1a)–(4.1c), with DA the covariant derivatives for R
4|8. It will also be assumed that

the torsion tensor Sij is real, Sij = S̄ij . The latter property means that W0 := e−σ is the

field strength of an Abelian vector multiplet, that is the intrinsic vector multiplet for M4|8.

For our subsequent consideration, it will be useful to view conformally flat N = 2

supergeometry as a conformally flat N = 1 superspace endowed with an Abelian N = 1

vector multiplet. Indeed, for the covariant derivatives (4.1a)–(4.1c), it holds that

e−(σ̄−σ)|J12 D1
α| e

(σ̄−σ)|J12 = ∇α + 2iW0αJ22 , (5.1a)

e−(σ̄−σ)|J12 D̄α̇
1 | e

(σ̄−σ)|J12 = ∇̄α̇ − 2i W̄ α̇
0 J11 . (5.1b)

Here the operators ∇A = (∇a,∇α, ∇̄α̇) have the form (4.8a)–(4.8c), where DA =

(Da,Dα, D̄α̇) are the flat N = 1 covariant derivatives, and the chiral superfield ϕ is defined

as

ϕ := W0| , D̄α̇ϕ = 0 . (5.2)

The spinor superfield in (5.1a), Wα
0 , is the covariantly chiral field strength of an Abelian

N = 1 vector multiplet,

∇̄α̇W
α
0 = 0 , ∇αW0α = ∇̄α̇W̄

α̇
0 . (5.3)

and is related to W0 as follows:

W0α = ϕ−3/2W0α , W0α := −
i

2
D2

αW0| . (5.4)
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In the case of N = 2 AdS superspace, ϕ is given by eq. (4.43) and W0α = 0.

In accordance with [1], off-shell hypermultiplets are described by covariant arctic su-

perfields of weight n, Υ(n)(u+), and their smile-conjugates. Given such a superfield in

M4|8, we can use the standard representation Υ(n)(u+) = (u+1)nΥ[n](ζ), and then

e−(σ̄−σ)J12Υ[n](ζ)
∣∣∣ = e−

n

2
(σ̄−σ)Υ[n]

(
e(σ̄−σ)ζ

)∣∣∣ ≡ Φ + ζΓ +

+∞∑

k=2

ζkΥ̂k| . (5.5)

Here the leading components Φ and Γ are covariantly chiral and complex linear,

respectively,

∇̄α̇Φ = 0 ,
(
∇̄2 − 4R

)
Γ = 0 , (5.6)

where R = −(1/4)ϕ−2D̄2ϕ̄ is the chiral scalar component of the torsion in the N = 1

conformally flat superspace, see. e.g. [7] for a review.

5.1 Projecting the N = 2 action into N = 1 superspace: II

Our first goal is to project the supersymmetric action (1.1) corresponding to M4|8,

S =
1

2π

∮

C
(u+du+)

∫
d4xd4θd4θ̄ E

L++

(S++)2
, (5.7)

into N = 1 superspace. Using the super-Weyl transformation laws given in section 4, for

the superfields appearing in (5.7) we find

L++ = eσ+σ̄L++ , D+
α L++ = D̄+

α̇ L++ = 0 ,

S++ = eσ+σ̄Σ++
0 , E = 1 , (5.8)

where

Σ++
0 =

1

4
(D+)2W0 =

1

4
(D̄+)2W̄0 . (5.9)

The new Lagrangian, L++, is a real weight-two projective multiplet in the flat N = 2

superspace.

In the action obtained,

S =
1

2π

∮

C
(u+du+)

∫
d4xd4θd4θ̄

e−σ−σ̄L++

(Σ++
0 )2

, (5.10)

we can make use of the identity

(D+)4e−σ−σ̄ =

(
1

4
(D+)2W0

)(
1

4
(D̄+)2W̄0

)
=(Σ++

0 )2 , (D+)4 :=
1

16
(D+)2(D̄+)2 , (5.11)

and then transform (5.10) in the following way:

S =
1

2π

∮

C

(u+du+)

(u+u−)4

∫
d4x (D−)4(D+)4

e−σ−σ̄L++

(Σ++
0 )2

∣∣∣
θ=0

=
1

2π

∮

C

(u+du+)

(u+u−)4

∫
d4x (D−)4 L++

∣∣∣
θ=0

, (5.12)

– 28 –



J
H
E
P
1
0
(
2
0
0
8
)
0
0
1

where

D−
α := u−

i Di
α , D̄−

α̇ := u−
i D̄i

α̇ , (D−)4 :=
1

16
(D−)2(D̄−)2 . (5.13)

This action can be seen to be invariant under arbitrary projective transformations of the

form (B.7). Without loss of generality, we can assume the north pole of CP 1 to be outside

of the integration contour, hence u+i can be represented as u+i = u+1(1, ζ), with ζ the local

complex coordinate for CP 1. Using the projective invariance (B.7), we can then choose u−
i

to be u−
i = (1, 0). Finally, representing L++ in the form

L++(z, u+) = iu+1u+2 L(z, ζ) = i
(
u+1

)2
ζ L(z, ζ) , (5.14)

and also using the fact that L++ enjoys the constraints ζiD
i
αL = ζiD̄

i
α̇L = 0, we can finally

rewrite S as an integral over the N = 1 superspace parametrized by the coordinates:

(xa, θα
1 , θ̄

1
α̇). The result is

S =
1

2πi

∮

C

dζ

ζ

∫
d4xd2θd2θ̄ L(ζ)

∣∣∣ . (5.15)

As a last step, we replace here L(ζ)| with the N = 1 projection of L(ζ) defined as

L++(u+) = i
(
u+1

)2
ζ L(ζ). Thus

L(ζ)| =
(
eσ+σ̄L(ζ)

)∣∣ = 1

ϕϕ̄
L(ζ)

∣∣ , (5.16)

and then the action obtained can be rewritten as

S =
1

2πi

∮

C

dζ

ζ

∫
d4xd2θd2θ̄ ϕϕ̄L(ζ)

∣∣ = 1

2πi

∮

C

dζ

ζ

∫
d4xd2θd2θ̄ E L(ζ)

∣∣ . (5.17)

This is the desired N = 1 projection of the action (5.7). In the AdS case, the above action

coincides with (3.8).

As follows from eqs. (5.1a) and (5.1b), the projection into N = 1 superspace should be

accompanied by the U(1)-rotation e−(σ̄−σ)|J12 applied to all superfields. This means that

the final expression for the action (5.17) is

S =
1

2πi

∮

C

dζ

ζ

∫
d4xd2θd2θ̄ E L

(ϕ

ϕ̄
ζ
)∣∣∣ . (5.18)

In the rest of this section, the U(1)-rotation e−(σ̄−σ)|J12 will be assumed to be performed.

5.2 Massive hypermultiplets in AdS4|8

As a simple application of the formalism developed, we consider the massive hypermul-

tiplet model (3.42) in AdS4|8 (the massive model (3.40) can be studied similarly). The

corresponding Lagrangian to be used in (5.18) is

L| =
1

|µ|
S(ζ)Υ̃(ζ)|emV0(ζ)|Υ(ζ)| , (5.19)

We remind that all the superfields are assumed to have been subjected to the U(1)-rotation

e−(σ̄−σ)|J12.
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The weight-zero arctic superfield Υ is characterized by the decomposition (3.22). For

the prepotential V0 of the intrinsic vector multiplet, we have

emV0(ζ)| =

(
1 + mζV+

)(
1 −

m

ζ
V−

)
, V+ = iϕ2ϕ̄−1 θ̄2 , V− = −iϕ̄2ϕ−1 θ2 . (5.20)

It is then natural to generalize the superfield redefinition (3.24) to the massive case as

follows:

Υ′(ζ)| := (1 + λζ) (1 + ζV+)Υ(ζ)| , Υ′(ζ)| = Φ + ζΓ′ +
∞∑

k=2

Υ′
kζ

k . (5.21)

The component superfield Γ′ is now constrained by

−
1

4

(
∇̄2 − 4µ

)
Γ′ = i|µ|

(
1 +

m

|µ|

)
Φ , (5.22)

while the components Υ′
k, k > 1, are complex unconstrained. Now, the contour integral in

the action generated by the Lagrangian (5.19) can easily be performed, and the auxiliary

fields integrated out. As a result, the action becomes

S =

∫
d4xd2θd2θ̄ E

(
Φ̄Φ − Γ̄

′
Γ′
)

. (5.23)

It is manifestly N = 1 supersymmetric. It also possesses hidden second supersymmetry and

U(1) symmetry. These are generated by a real parameter ε under the constraints (2.31),

and have the following form:

δεΦ = iε|µ|

(
1 +

m

|µ|

)
Φ −

(
ε̄α̇∇̄

α̇ + εµ
)
Γ′ = −

1

4
(∇̄2 − 4µ)(εΓ′) ,

δεΓ
′ = iε|µ|

(
1 +

m

|µ|

)
Γ′ + (εα∇α + εµ̄)Φ . (5.24)

This transformation reduces to (3.27) for m = 0. A purely chiral action, which is dual

to (5.23), proves to be

∫
d4xd2θd2θ̄ E

(
Φ̄Φ + Ψ̄Ψ − i

µ̄

|µ|

(
1 +

m

|µ|

)
ΨΦ + i

µ

|µ|

(
1 +

m

|µ|

)
Ψ̄Φ̄

)
. (5.25)

This action reduces to (3.26) for m = 0. Another interesting special case is m = −|µ| for

which (5.25) turns into the superconformal massless action (3.18).

The symmetry group of (5.25) is OSp(2|4). The second SUSY and U(1) transforma-

tions are:

δεΦ = −
1

4
(∇̄2 − 4µ)(εΨ̄) , δεΨ =

1

4
(∇̄2 − 4µ)(εΦ̄) . (5.26)

Such transformations are m-independent and identical to those which occur in the different

models (3.18). This indicates that the transformations (5.26), in conjunction with the

N = 1 AdS transformations, form a closed algebra with a central charge proportional to
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m. This is indeed the case. One can check that transformations (5.26) have a manifestly

N = 2 supersymmetric realization. The latter is given in terms of an isospinor superfield

qi obeying the constraints

D(i
α qj) = D̄

(i
α̇ qj) = 0 (5.27)

which generalize Sohnius’ construction [49] for the off-shell hypermultiplet with intrinsic

central charge [50]. Unlike the arctic hypermultiplets (or more general harmonic q+-

hypermultiplets [24, 25]), the above realization can only be used for the construction of

simplest supersymmetric theories.

5.3 Vector multiplet self-couplings

We now turn our attention to the system of Abelian vector multiplets described by the

Lagrangian

L++ = −
1

4
V0

[(
(D+)2 + 4S++

)
F(WI) +

(
(D̄+)2 + 4S++

)
F̄(W̄I)

]
, (5.28)

In the AdS case, this Lagrangian becomes (3.39). Here we will consider the more gen-

eral case of an arbitrary conformally flat superspace. We are interested in reducing the

model (5.28) to N = 1 conformally flat superspace. Using conformal flatness, it turns out

that the dynamics of (5.28) is equivalently described by the Lagrangian

L++ = −
1

4
V0

[
(D+)2W0F

(
WI

W0

)
+ (D̄+)2W̄0F

(
W̄I

W̄0

)]
, (5.29)

where

WI = W−1
0 WI , D̄i

α̇WI = 0 , DijWI = D̄ijW̄I . (5.30)

For the general conformally flat supergeometry, the superfield W0 = e−σ is only constrained

to obey the equation for the field strength of an Abelian vector multiplet in N = 2 flat

superspace, and otherwise it is arbitrary. The field strength W0 is generated by a weight-

zero tropical prepotential V0(ζ),

V0(ζ) =

+∞∑

k=−∞

ζkvk , vk = (−1)kv−k , D1
αvk = D2

αvk+1 , (5.31)

The field strength is given as

W0 =
i

4
D̄2

1v1 =
i

4
D̄2

2v−1 . (5.32)

The resulting flat-superspace action is

S =
i

4

∮

C

dζ

2πiζ

∫
d4xd2θd2θ̄ V0(ζ)

ζiζj

ζ

[
DijW0F

(
WI

W0

)
+ D̄ijW̄0F

(
W̄I

W̄0

)]∣∣∣ . (5.33)
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It involves only the component superfieds v−1, v0 and v1 of V0(ζ). Computing the con-

tour integral, performing some D-algebra manipulations and using the identities (5.30)

and (5.32), one can obtain the equivalent form for the action:

S =

∫
d4xd4θ ϕϕ̄ Φ̄IF

I (Φ) +

∫
d4xd2θ ϕ3 R

(
2F (Φ) − ΦIF

I (Φ)
)

+

∫
d4xd2θ

[
W α

0 W0α

(
2F (Φ) − 2ΦIF

I (Φ) + ΦIΦJF
IJ(Φ)

)

+2W α
0 WIα

(
FI (Φ)−ΦJF

IJ(Φ)
)
+W α

I WJαF
IJ(Φ)

]
+c.c. (5.34)

Here we have introduced the N = 1 components, ΦI and WIα, of WI defined as follows:

ϕΦI = WI | , WIα := −
i

2
D2

αWI

∣∣ , DαWIα = D̄α̇W̄ α̇
I , (5.35)

The similar components of W α
0 are defined in eqs. (5.2) and (5.4). Associated with WIα is

the curved-superspace field strength WαI = ϕ−3/2WαI , which obeys the Bianchi identity

∇̄α̇WαI = 0, ∇αWαI = ∇̄α̇W̄
α̇
I . In terms of the superfields introduced, the action takes

the following final form:

S =

∫
d4xd4θ E Φ̄IF

I (Φ)

+

∫
d4xd4θ

E

R

[
R
(
2F (Φ)−ΦIF

I (Φ)
)
+Wα

0 W0α

(
2F (Φ)−2ΦIF

I (Φ)+ΦIΦJF
IJ(Φ)

)

+2Wα
0 WIα

(
FI (Φ)−ΦJF

IJ(Φ)
)
+Wα

I WJαF
IJ(Φ)

]
+ c.c. (5.36)

If F(Φ) is a homogeneous function of degree two, ΦIF
I (Φ) = 2F(Φ), the action consider-

ably simplifies, in particular all dependence on Wα
0 disappears,

S =

∫
d4xd4θ E Φ̄IF

I (Φ) +

∫
d4xd4θ

E

R
Wα

I WJαF
IJ(Φ) + c.c. (5.37)

The action also simplifies drastically in the case of AdS4|8 where Wα
0 = 0.

6. Open problems

To conclude this paper, we would like to list a few interesting open problems.

In the N = 1 AdS supersymmetry, there exists a very nice classification of the off-shell

superfield types due to Ivanov and Sorin [18] (see also [51] for a review), which is based on

their local superprojectors. It would be interesting to carry out a similar analysis for the

case of N = 2 AdS superspace. This might be useful for deriving a manifestly N = 2 su-

persymmetric formulation for the off-shell higher spin N = 2 supermultiplets [21] on AdS4.

When realizing AdS4|8 as a conformally flat superspace, we used the stereographic

coordinates for AdS4 (defined in appendix D), in which the metric is manifestly SO(3, 1)

invariant. By analogy with the five-dimensional consideration of [52], it would be
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interesting to re-do the whole analysis in Poincaré parametrization9 in which the metric

for AdS4 looks like

d2s =

(
R

z

)2(
ηm̂n̂ dxm̂dxn̂ + dz2

)
, R = const , m̂, n̂ = 0, 1, 2, (6.1)

with ηm̂n̂ the three-dimensional Minkowski metric. First of all, this would give direct

access to three-dimensional superconformal theories. Second, the Poincaré coordinates

should be very useful for the explicit elimination of the auxiliary superfields in nonlinear

sigma-models of the form (3.4), see [52] for more detail.

It would be desirable to develop harmonic-superspace techniques for AdS4|8. This

should proceed similarly to the harmonic-superspace construction developed in the case of

5D N = 1 AdS superspace [26]. The harmonic superspace approach is known to be most

suitable for quantum calculations in N = 2 super Yang-Mills theories. Thus it would be

very interesting, e.g., to see how the covariant harmonic supergraphs [53, 54] generalize to

the AdS case.
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A. Superspace geometry of conformal supergravity

Consider a curved 4D N = 2 superspace M4|8 parametrized by local bosonic (x) and

fermionic (θ, θ̄) coordinates zM = (xm, θµ
i , θ̄i

µ̇), where m = 0, 1, . . . , 3, µ = 1, 2, µ̇ = 1, 2

and i = 1, 2. The Grassmann variables θµ
i and θ̄i

µ̇ are related to each other by complex

conjugation: θµ
i = θ̄µ̇i. The structure group is chosen to be SO(3, 1) × SU(2) [55, 1], and

the covariant derivatives DA = (Da,D
i
α, D̄α̇

i ) have the form

DA = EA + ΩA + ΦA . (A.1)

Here EA = EA
M (z)∂M is the supervielbein, with ∂M = ∂/∂zM ,

ΩA =
1

2
ΩA

bcMbc = ΩA
βγ Mβγ + Ω̄A

β̇γ̇ M̄β̇γ̇ (A.2)

is the Lorentz connection,

ΦA = ΦA
klJkl , Jkl = Jlk (A.3)

is the SU(2)-connection. The Lorentz generators with vector indices (Mab = −Mba) and

spinor indices (Mαβ = Mβα and M̄α̇β̇ = M̄β̇α̇) are related to each other by the rule:

Mab = (σab)
αβMαβ − (σ̃ab)

α̇β̇M̄α̇β̇ , Mαβ =
1

2
(σab)αβMab , M̄α̇β̇ = −

1

2
(σ̃ab)α̇β̇Mab .

9Similar to the stereographic coordinates, these coordinates cover one-half of the AdS hyperboloid.
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The generators of SO(3, 1) × SU(2) act on the covariant derivatives as follows:10

[Jkl,D
i
α] = −δi

(kDαl) , [Jkl, D̄
α̇
i ] = −εi(kD̄

α̇
l) ,

[Mαβ ,Di
γ ] = εγ(αD

i
β) , [M̄α̇β̇, D̄i

γ̇ ] = εγ̇(α̇D̄
i
β̇)

, [Mab,Dc] = 2ηc[aDb] , (A.4)

while [Mαβ, D̄i
γ̇ ] = [M̄α̇β̇,Di

γ ] = [Jkl,Da] = 0. Our notation and conventions correspond

to [7, 1]; they almost coincide with those used in [10] except for the normalization of the

Lorentz generators, including a sign in the definition of the sigma-matrices σab and σ̃ab.

The supergravity gauge group is generated by local transformations of the form

δKDA = [K,DA] , K = KC(z)DC +
1

2
Kcd(z)Mcd + Kkl(z)Jkl , (A.5)

with the gauge parameters obeying natural reality conditions, but otherwise arbitrary.

Given a tensor superfield U(z), with its indices suppressed, it transforms as follows:

δKU = K U . (A.6)

The covariant derivatives obey (anti-)commutation relations of the form:

[DA,DB} = TAB
CDC +

1

2
RAB

cdMcd + RAB
klJkl , (A.7)

where TAB
C is the torsion, and RAB

kl and RAB
cd constitute the curvature. The torsion is

subject to the following constraints [55]:

T i
α

j
β

c = T i
α

j
β

γ
k = T i

α
j
β

k
γ̇ = T i

α
β̇
j

γ
k = Ta

j
β

c = Tab
c = 0 ,

T i
α

β̇
j

c = −2iδi
j(σ

c)α
β̇ , Ta

j
β

γ
k = δj

k Taβ
γ . (A.8)

Here we have omitted some constraints which follow by complex conjugation. The algebra

of covariant derivatives is [1]

{Di
α,Dj

β} = 4SijMαβ + 2εijεαβY
γδMγδ + 2εijεαβW̄

γ̇δ̇M̄γ̇δ̇

+2εαβεijSklJkl + 4YαβJ ij , (A.9a)

{Di
α, D̄β̇

j } = −2iδi
j(σ

c)α
β̇Dc + 4δi

jG
δβ̇Mαδ + 4δi

jGαγ̇M̄ γ̇β̇ + 8Gα
β̇J i

j , (A.9b)

[Da,D
j
β ] = i(σa)(β

β̇Gγ)β̇D
γj +

i

2

(
(σa)βγ̇S

jk − εjk(σa)β
δ̇W̄δ̇γ̇ − εjk(σa)

α
γ̇Yαβ

)
D̄γ̇

k

+ curvature terms . (A.9c)

Here the real four-vector Gαα̇, the complex symmetric tensors Sij = Sji, Wαβ = Wβα,

Yαβ = Yβα and their complex conjugates S̄ij := Sij, W̄α̇β̇ := Wαβ, Ȳα̇β̇ := Yαβ obey

additional differential constraints implied by the Bianchi identities [55, 1]. Of special

importance are the following dimension 3/2 identities:

D(i
αS

jk) = D̄
(i
α̇S

jk) = 0 . (A.10)

10In what follows, the (anti)symmetrization of n indices is defined to include a factor of (n!)−1.
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B. Vector multiplets in conformal supergravity

Here we discuss the projective-superspace description of off-shell vector multiplets in 4D

N = 2 conformal supergravity. Following the conventions adopted in [1], an Abelian vector

multiplet is described by its field strength W(z) which is covariantly chiral

D̄α̇
i W = 0 , (B.1)

and obeys the Bianchi identity

Σij :=
1

4

(
Dγ(iDj)

γ + 4Sij
)
W =

1

4

(
D̄

(i
γ̇ D̄

j)γ̇ + 4S̄ij
)
W̄ =: Σ̄ij . (B.2)

Under the infinitesimal super-Weyl transformations, W varies as

δσW = σW . (B.3)

The super-Weyl transformation of Σij is

δσΣij =
(
σ + σ̄

)
Σij . (B.4)

The vector multiplet can also be described by its gauge field V(z, u+) which is a

covariant real weight-zero tropical supermultiplet possessing the following expansion in the

north chart of CP 1:

D+
αV = D̄+

α̇V = 0 , V(z, u+) = V(z, ζ) =

+∞∑

k=0

ζk Vk(z) , Vk = (−1)kV̄−k . (B.5)

It turns out that the field strength W and its conjugate W̄ are expressed in terms of the

prepotential V as follows:

W(z) = −
1

8π

∮
(u+du+)

(u+u−)2
(D̄−

α̇ D̄
α̇− + 4S̄−−)V(z, u+) , (B.6a)

W̄(z) = −
1

8π

∮
(u+du+)

(u+u−)2
(Dα−D−

α + 4S−−)V(z, u+) , (B.6b)

with the contour integral being carried out around the origin. These expressions can be

shown to be invariant under arbitrary projective transformations of the form:

(ui
− , ui

+) → (ui
− , ui

+)R , R =

(
a 0

b c

)
∈ GL(2, C) . (B.7)

Using the fact that V(z, u+) is a covariant projective supermultiplet, D+
αV = D̄+

α̇V = 0, one

can show that the right-hand side of (B.6a) is covariantly chiral. For this, it is advantageous

to make use of the following equivalent representations:

W =
1

8π

∮
dζ

ζ2

(
D̄α̇1D̄

α̇
1 + 4S̄11

)
V(ζ) =

i

4

(
D̄α̇1D̄

α̇
1 + 4S̄11

)
V1 ,

W =
1

8π

∮
dζ(D̄α̇2D̄

α̇
2 + 4S̄22)V(ζ) =

i

4

(
D̄α̇2D̄

α̇
2 + 4S̄22

)
V−1 . (B.8)
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The field strength (B.6a) can be shown to be invariant under gauge transformations

of the form

δV = λ + λ̃ , (B.9)

with the gauge parameter λ(z, u+) being a covariant weight-zero arctic multiplet, and λ̃

its smile-conjugate,

D+
α λ = D̄+

α̇ λ = 0 , λ(z, u+) = λ(z, ζ) =

+∞∑

k=0

ζkλk(z) , (B.10a)

D+
α λ̃ = D̄+

α̇ λ̃ = 0 , λ̃(z, u+) = λ̃(z, ζ) =

+∞∑

k=0

(−1)kζ−kλ̄k(ζ) . (B.10b)

To prove the gauge invariance of W, the only non-trivial observation required is that the

constraints on λ and λ̃ imply

(
D̄α̇1D̄

α̇
1 + 4S̄11

)
λ1 = 0 ,

(
D̄α̇2D̄

α̇
2 + 4S̄22

)
λ̄1 = 0 . (B.11)

It can also be demonstrated that the following super-Weyl transformation of the gauge

prepotential V(z, u+),

δσV = 0 , (B.12)

implies the super-Weyl transformation of W, eq. (B.3).

C. N = 1 AdS Killing supervectors

The covariant derivatives of the N = 1 anti-de Sitter superspace AdS4|4,

∇A = (∇a,∇α, ∇̄α̇) = EA
M∂M +

1

2
φA

bcMbc , (C.1)

obey the following (anti-)commutation relations:

{∇α,∇β} = −4µ̄Mαβ , {∇α, ∇̄β̇} = −2i(σc)α
β̇∇c , (C.2a)

[∇a,∇β] = −
i

2
µ̄(σa)βγ̇∇̄

γ̇ , [∇a,∇b] = −|µ|2Mab , (C.2b)

with µ a complex non-vanishing parameter which can be viewed to be a square root of

the curvature of the anti-de Sitter space, see, e.g., [7] for more detail. The symmetries of

AdS4|4 are generated by the corresponding Killing supervectors defined as

Λ = λa∇a + λα∇α + λ̄α̇∇̄
α̇ , [Λ + ωbcMbc,∇A] = 0 , (C.3)

for some local Lorentz transformation associated with ωbc. As shown in [7], the equations

in (C.3) are equivalent to

ωαβ = ∇αλβ , ∇αλα = 0 , 0 =
i

2
µλαα̇ + ∇̄α̇λα , (C.4)

0 = ∇(αλβ)β̇ , 0 = ∇̄β̇λαβ̇ + 8iλα . (C.5)
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D. Stereographic projection for AdS spaces

Consider a d-dimensional anti-de Sitter space AdSd. It can be realized as a hypersurface

in R
d−1,2 parametrized by Cartesian coordinates Z â = (Zd, Za), with a = 0, 1, . . . , d − 1.

The hypersurface looks like

−(Zd)2 − (Z0)2 +

d−1∑

i=1

(Zi)2 = −(Zd)2 + ZaZa = −R2 = const . (D.1)

One can introduce unconstrained local coordinates for AdSd as a natural generalization

of the stereographic projection for Sd. Let us cover AdSd by two charts:

(i) the north chart in which Zd > −R; and

(ii) the south chart in which Zd < R.

Given a point Z â in the north chart, its local coordinates xa will be chosen to correspond

to the intersection of the plane Zd = 0 and the straight line connecting Z â and the “north

pole” Z â
north = (−R, 0, . . . , 0). Similarly, given a point Z â in the south chart, its local

coordinates ya will be chosen to correspond to the intersection of the plane Zd = 0 with

the straight line connecting Z â and the “south pole” Z â
south = (R, 0, . . . , 0).

In the north chart, one finds

xa =
R Za

R + Zd
, xaxa < R2 . (D.2)

A short calculation for the induced metric, ds2 = −(dZd)2+dZa dZa, gives the conformally

flat form:

ds2 =
4dxadxa(

1 − R−2 x2
)2 , x2 = xbxb . (D.3)

In the south chart, one similarly gets

ya =
R Za

R − Zd
, yaya < R2 . (D.4)

The metric is obtained from (D.3) by replacing xa → ya.

In the intersection of the two charts, the transition functions are:

ya = −R2 xa

x2
. (D.5)

This is an inversion, that is, a discrete conformal transformation.
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